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SURVEILLANCE PROGRAMS FOR
DETERIORATING LOTS IN STORAGE
by
Frederick S. Hillier

1. Introduction.

The military and many civilian organizations require that a suffi-
cient supply of materials be in storage at any one time to meet certain
emergency needs that may arise. The fulfillment of this requirement is
primarily s procurement problem. However, the procurement of an
adequate supply of materials alone does not necessarily guarantee an
adequate supply of usable materials when the need for them arises.
Their deterioration in storage may render them unusable. Despite all
precautions, at least a small rate of deterioration is inevitable for
all items in storage. It is therefore essential that & systematic
progrem for the surveillance of such stored items be maintained in order
to insure that the supply of usable items is always adequate.

The development of such surveillance programs has received very
little attention in the literature. Derman and Solomon [1] studied the
quality of lots in storage over time when these lots are periodically
subjected to standard acceptance sampling plans. Ireson [2] discussed
administrative aspects of surveillance programs. Savage [3] briefly
examined when a piece of equipment reserved for emergency use should be
withdrawn from storage for repair; this paper considered in general
terms the case where the relevant costs are those for regular repair and

for repeir when the emergency occurs and both these costs are known



deterministic functions of the time elapsed since the last repair.
However, no comprehensive investigation has yet been reported regarding
the appropriate time for corrective action to compensate for the deteri-
orating quality of a lot in storage, given the cost of appropriate
corrective action and the cost of an imperfect lot when the emergency
occurs as functions of the number of defective items in the lot. This
paper presents the results of such an investigation.

The assumption made about the lot in storage is that the storage
life of eech item, i.e., the time in storage until becoming defective,
has & common known exponential distribution. Of course, this condition
is not alweys met. However, the exponential distribution of life has
been demonstrated and justified on empirical and theoretical grounds for
numerous types of items. Furthermore, the particular exponential distri-
bution can often be estimated by experimentation or from prior experience
with the same product. Thus, this formulation will often become appli-~
cable at some time after the initiation of a continuing surveillance
program for a given product.

It is also assumed that the time until the emergency necessitating
the use of the lot has a known exponential distribution. This distri-
bution should ordinarily be the appropriate one since it implies the
usual situation that the emergency is a random event in time. Examples
of such emergencies that might be of interest are the beginning of a
war, a natural disaster, the breakdown or failure of certain equipment,
the need to enter a fallout shelter, a rush order, the rejection of
reguler material, and the cancellation of needed deliveries by a supplier.

With the informetion available regarding the quality of the lot over
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time, it is no longer necessary to sample the lot periodically to esti-
mate its quality in order to determine 1if any corrective action is
advisable. It 1s now practical to lnstead select the future time when
the deteriorating quality of the lot will Justify corrective action, if
the emergency has not occurred yet. This corrective action might involve
inépecting the entire lot and replascing or repairing those items found
to be deficient. However, if inspection is sufficiently costly, or if

it involves destructive testing, or if the future guality of the
non-defectives in the lot is mistrusted-despite the assumption of an
exponential storage life- the proper action would be to immediately
replace or repair the entire lot. The formulation presented here permits
both of these alternatives.

In the absence of any surveillance sampling, there remain only two
types of costs that are not independent of the surveillance program
selected. One type is the cost of taking corrective action periodically
until the emergency occurs. Its expected value tends to decrease as the
time interval between successive corrective actions is increased. The
second type is the cost or the imputed cost incurred because of the
defective items in the lot when the emergency occurs. The expected
value of this type of cost increases as the time between corrective
actions is increased. Therefore, this time needs to be carefully
selected so as to obtain the proper balance between these two types of
costs. To do so requires that the cost of corrective action and the
cost of using an imperfect lot, each as a function of the number of the
defectives in the lot, be known.

The problem considered here is the determination of the time between



corrective actions which minimizes the total expected cost from the

beginning of the program until the emergency is met. Section 2 presents
the formulation of the problem and the operating characteristics of a
given surveillance program. The critical equation is derived for general
cost funetions in Section 3. It is then developed and simplified for
specific cost functions of interest in the following two sections. These
results are illustrated with an example in Section 6. The discussion of
the resultsA;n Section 7 includes a suggestion of how they can also be
applied in the initial absence of information regarding the distribution

of storage life. The final section surmmarizes the conclusions.

2. Formulation of the Problemn.

A lot composed of N items 1s being held in storage. It will be
used only if certain emergency needs arise, as in the stockpiling of
vital materisl. The probability density function of the time until such

an emergency arises, g(t), is given by

0 , if £ <0

6e™ ", if t>0,

where 6 > 0 and is known. The quality of the lot can be expected to
deteriorate with age. At periodic intervals, corrective action is teken.
This corrective action consists either of replacing the entire lot or of
inspecting each item in the lot and either replacing or repairing those

items found to be defective. The known cost of takling corrective action
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when there are n defective items in the lot is R(n). For each item
in the lot, the cumulative density function of the time elapsed since
the last corrective action until the item becomes defective, F(t), 1is

given by

-Ht
where 1 -e ° 1g the known initial probability of being defective

and M has a known positive value. Thus, at time t, the defective
vs. non-defective status of the resgpective items can be considered as
independent Bernoulli trisls. Hence, the probability that the lot

containg n defective items at time t, the time elapsed since the

last corrective action, is given by

’

0 s otherwise.

n -u(t+t j N-n
o)

e s if n=0,1, 2, ... ,N

-u(t+t )
(l - e °

Pn(t) =

The known cost or imputed cost resulting from the presence of n
defective items in the lot at the timeithe émergency arises is D(n).
The obJective is to determine the value of t, the elapsed time
between successive corrective actions, which minimizes the total
expected cost from the beginning of the progrem until the emergency

is met.



3. Analysis
let T = (tl, ty, oo ) be the sequence of positive numbers such

that ‘corrective action is taken at the times tl, t, + ¢t ess » unless

1 2’
the emergency intervenes. Let the random varisble E ©be the time at

which the emergency occurs. Thus, corrective action is taken at the

I Y T
times t., t. + t,, ..., t,, where t, <E KL t,.
1° 1 2 ) i i1 1 =1 i

1 =
The total cost from the beginning of the program‘éntil the emergency

is met is

vhere n,, n n_ are the number of defectives in the lot at times

0t s

b, bttt t

1 Dy et s and g is the number of defectives in the

’
ol i

o(T) be the cost from the beginning of the

Q 'FE'JB g

lot at time E. Let

program until and including the time t Let Cl(T) be the cost of

1

the program after the time t Therefore,

1

c(T) = CO(T) + Cl(T) .
Since

cl(Tlm =0) =0,

c, (1) = Cl(T|m >0) Pm >0) .

l/ It is assumed that the program is begun immediately after corrective
action has been taken. Corrective action may be defined to include
the initial placement of the lot in storage if the effect on the
quality of the lot is indistinguishable.

6



Hence,

E(C(T)) = B(C(T)) + E[Cl(T|m >0)) P(m>0) .

Let
s. ={T|E{(c(T)) = inf E{C(X)), TeS.) ,
1 2
XeS
2
where
Sy = {lbys toy «ov ) Ity >0,1=1,2, .00 ) .

)

It is assumed that Sl is not empty, i. e., that there exists a

solution to the problem. The objective is to find a solution by

determining an element of Sl'

Notice that

-etl
P(m > 0) = P(E > tl) =e .

Therefore, forming the expectation for CO(T), E{C(T)) becomes

t N
E(C(T)) = fl (L 0(3) By(t))oe™® at
o J

=0

-9t N -6t
+ e 1 ng R(JP, (%)) + e 1 E{cl(Tlm > 0)) .



Due to the nature of the exponential distribution, i. e.,

PE>¢t, +tlE> t,) =P(E>¢t)

1

and also because the quality of the lot after tl is independent of

its quality before t it is clear that Cl(Tlm > 0), and therefore

l,

E[Cl(Tim >0)}, 1s independent of t.. Hence, it is evident that

1

E(C(T)} is a function of t, and E{Cl(Tlm > 0), where E(Cl(T|m > 0}

1

is a function of t,, t,, ... , and that if (tl, t t3, vee )

5)

minimizes E{C(T)}, i.e., if (tl, ths tay oo )eSl, then

5’
(t;5 ty) ty ... ) minimizes E[Cl(T|m > 0)}. Therefore, if

(tl, t t3, cee )eSl, then if (tl, t;, t;, .e. ) also minimizes
E{cl(Tlm >0)), (tg, t;, t;, .«. )eS). Tt also follows from the nature
of the exponential distribution and the fact that the quality of the lot
depends only on the time elapsed since the last corrective action that

if (tl, t, t3, ee. )€S then (tl, tys toy ees ) minimizes

l}

E[Cl(T‘m > 0)}. Therefore if (tl, toyy tay oo YeS then

3’ l)
(tl, t, t2, e )eSl. By repeated application of this argument, it
)eS

follows that if (tl, ty, t then (tl, ts by, e )eSl.

3 e 12
The important conclusion is that one solution to this problem is of the
form that the time between corrective actions is always the same. This
is the solution that will be sought. Thus denoting this constant
positive time between consecutive corrective actions by tl’ the
problem now consists of dete;mining the optimum value of tl.

It will prove very useful to notice that, for this newly defined

problem, E(C(T)]} = E[Cl(T|m > 0)}). Since T is now restricted to be




of the form (tl, tl’ tyy e ) where t. > 0, it will be more

1
meaningful to now denote E{C(T)} by E{z‘ftlf»‘). The expression for the

total expected cost can now be written as

t N -6t
Be(y)) = [ UL o) B e
]

n=o0

-9t N
+ e 1[2 R(n)Pn(tl) + E[C(tl)]] .

n=o

Therefore,
-0t t. | N -9t
1 _ [ dt
e Ymele)) = [ o) 2, @),
o n=o
6t, XN
+ e B R(m)E () ,
n=o0
so that
N t, X -6t -9t; N
E(C(t)))} = —S5¢ j (L D(n)P_(t))ee at+ e ¥ R(n)P, (t,) -
1-e l]Jo n=o0 n=o0

For the particular Pn(t) function for this problem, specified earlier,
the conditions for Liebnitz's Rule are met and the derivative exists.

Setting the derivative equal to zero,



il ! 1l
L p(n)P_(t, )oe ot
n=0 nl dt
a E{C(t,))) = - Xn(n)P (t)|6e |
-0t -Gt
dt 1 n=o
1 l-e
N -0t N
d 1
oty a?( )X R(n)Pn(tl)) - fe L R(n)P_(t))
e 1l \n=0 n=0
+ —
-etl
l-e
e-e't: -6t l
- =k [,'R(n)P (t,)
n=o0
l-e
=0
Cancelling common terms, the critical equation becomes -

wt,| | X 14 | N
l-e Y D(n)E(t,) + Ed_ g n)P (¢)] - n§° R(n)P_(t,)

t . N
=f 1 g D(n)e_ (t)jeeFat+e 1 Y RmP (t)
(o]

n=o n=0

10



Simplifying slightly,
14 3
1-e % D(n)P_(t,) +7 T n{:oR(n)Pn(tl)

tl N -0t S
=f Y, D(n)P (t)) 6e at + T R(P (t) .
(¢} n=o n n=o0o n

It is epparent that this critical equation would he exceedingly
difficult to solve for t, for most D(n) and R(n) functions.
But if one were unable to solve this equation, the analysis would
have little practical value. Fortunately, greatly simplified
equations quite amenable to solution can be obtained for certain D(n)
and R(n) functions of great practical interest. This is especially
true where D(n) and R(n) are linear functions of n. This case
is studied and a comprehensive set of solutions graphed in the next

section. The following section then studies the case where R(n) is

a linear function and D(n) is a certain quadratic function.

11



4, Solution for Linear D(n) end R(n) Functions

Assume that D(n) = Cpen. In other words, the cost of having
defectives in the lot when the emergency occurs is proportional to n,
the number of those defectives. This would seem to be the appropriate
D(n) function for many situations. It should also serve as a suitable
spproximation for many more situations.

Assume that R(n) = K + Cg'n, where K> 0. In other words, the
cost of taking corrective action-whether it be the replacement of the
entire lot, or more likely the screening of the lot and the repair or
replacement of defective items - consists of a fixed cost plus a certain
cost for each defective item in the lot. This would appear to be the
appropriate R(n) function, or at least a reasonable approximation,
for practically every situation. The fixed cost could be the red tape
cost of ordering or producing new items plus the cost of inspecting the
lot. The cost for each defective item could be the cost associated only
with replacing or repairing that item. If the lot is automatically
replaced, the entire cost is K.

When performing the summastion operations for this case, it is

crucial to notice that, for fixed t, the Pn(t) probabilities describe

a binomial distribution with parameter (l-e-u(t+t°)), end that the
-H-(t+to) N

mean of this distribution is N(l-e ). The Y D(n)Pn(t) and
n=o0

N
IZR(n)Pn(t) summations are analogous to finding this mean.
n=o

Thus,

12



. S -1 (t+t ) -H(t+t )
ZD(n)Pn(t) = X CD.n(Ir\I) (1-e o )n (e o’ \N-n
n=0 n=o
-u(t+to)
= CD'N(l-e )
and
- N -H(t+t ) H(t+t )
R(n)Pn(t) = z: (K+CR.n) ( ) (1-e o )n e o’ \N-n
n=o n=o
B(t+t )
= K+ CR'N(l-e )

Therefore, after the indicated differentiation and integration operations

are performed, the critical equation becomes

—u(,+t )]
1 1l o
+ ‘5CRNU'e

-6t —H(t, +t )
[1- 1] [CD-N (l-e 1o

th P -H-to

-t (W49)
= CD'N [l-e - —_— e l-e

-u(t+to“]

"+0 ] + [K*CR'N (l'e

13



Combining like terms and simplifying,

CR-NLl

(]

T -t (H+0)
1 8 1
+ CR Ne - CD N v

9t bt
l) e 1 (-CD'N +

»

Hto -uto 6
= e [K+CR’N-CD’Ne (i-:e-)] .

Simplifying further and dividing through by N,

-8 tl}

—ut C 1 C
1 R R 0
e [('CD M-I CR) i ('CD *o t ‘e

Finally,

1k



In order to simplify notation, let

Wt Ht
K o 6
D=e N+CR'CDe _uw)]’
-Cp u;ecR
A-—="1 if DAO
m m
oo B¢
B=“+eg 6 R, iIf DAO .

Thus, assuming D # O, the critical equation can now be written as

Notice that

Mt
Ae T [1 -

Notice that it has a positive solution only if A > 1. While an

explicit solution for t., 1is not available, this critical equation can

1

be easily solved for t. by numerical methods. This is especially true

1

15



since

a Aeutl L e-atl
dt TR
1
Bt -t (H+6)
1 ol 1
= - Ale + A(I-H-G] (m e
“Kt 6t
= - Ale 1 (l -e l)
< 0 , for tl>0, A>0 .

Thus, if A > !ﬁ, the critical equation has a unique positive solution;

otherwise, it has no positive root. Furthermore, because the left side
of the equation strictly decreases as tl increases, tl cen be
estimated as closely as desired by determining lower and upper bounds

to tl by trial and error.

Figures 4.1, 4.2, and 4.3 present a comprehensive set of solutions
of the critical equation. For the particular values of (A - %) and
(p—"_:é) of interest, the value of Wt, and therefore t, can be closely
estimated by interpolating between the given level curves.

16
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It is of course true that being a positive root of the critical
equation is a necessary, but not sufficient, condition for minimizing

E{C(tl)]. The sufficient condition, that

Q
n

E{C(ty)}] >0 ,
at 1

[V

will now be investigated. Assume that A > E%Q , D#O.

Tracing through the derivation of the critical equation, it is

clear that

" -6t Bt
) e l] - 1) Ne .

-0t
d ge 1 Yy
Tt (E{C(tl)]) =D %573 (Ae [l’(ﬁ'é
1 1-e 1

Therefore,
-6t

2 1 Kt -6t Kt
& |eqc(t,))| = 0 =22 me T Jie f| me ©

dt2 1 -th 2

1 l-e

-6t -6t -6t -0t -6t
1.2 .2 1 1 1 1 -kt -9t -Ht
-(1l-e Y© 8% e -0e *2(1l-e )6e 1 ) 1
l-e

Assume that tl is a positive root of the critical equation. Hence,

the second term vanishes. Additionally,

20



0 1 ) —etl -Ht
= -Ade l-e N °©°<o0 .
-0t \ 2
1
l-e
Therefore,
2
— (E(C(tl)]) >0
at]

if and only if D < O, 1In other words, if

X -uto
ITI+CR<CDe

W

*
then the tl which is the positive root of the critical equation

minimizes E@(tl)1. This is further verified by the fact that, for

this case,

4

dt

*
E{c(t.)})] <o for 0<t, <t, .
1 1 1 1

It remains to investigate the other cases. If D > 0 it becomes

quickly clear that this implies A < Egg, which in turn implies

a
It (E(c(tl)] <0 for t, >0 ,

21



which indicates that corrective action should never be taken, i.e.,
tl =®, This is intuitively reasonable since D > 0 implies that the
cost of corrective action is high relative to the cost of having
defectives in the lot when the emergency occurs.

It is easily seen that the case that A < E-;g- can not occur if
D < 0. Therefore, the only remaining case is D = O. For this case,

the critical equation becomes

It -8t
H+6 1 [ 1
(-CD + 5 CR) e [l -(ﬁa) e ] =0 .,

But this equation has no positive root since

-C +Eﬁc <E.+.2

p* 5 < D =0,

since K> 0. Tt is similarly verified that, for this case,

st 9

1 Mt -6t
d _ w+6 o fe 1 4] 1
I (E(C(tl) ]) = (-CD + =5 Cp| Ve ( 2T 13 © [l"_u+6) e ]
1l lj ,
l-e
<0 for t, >0 .

Therefore, corrective action should never be taken.

The general conclusion is that the ¢, vhich minimizes E[C(tl)]

is the positive root of the critical equation if a positive root exists;

if the positive root exlists, it will be unique; if 1t does not exist, ‘cl

should be infinite, {i.e., never take corrective action.
22



5. Solution for Certain Quadratic D(n) and Linear R(n) <Functiops

Assume that D(n) =

CD-na. This should serve as a suitable
approximation for the type of situation in which the availability of
non-defective items in the lot can partially compensate for the defective
items, so that the imputéd cost of having only a few defectives in the
lot is relatively low but this cost increases very rapidly as the number
of defectives increases. Assume, as before, that R(n) = K + CR-n,
where K > 0.

Proceeding as before, it needs to be recalled that the second
moment of the binomial distribution described by the Pn(t) probabil-
ities is

-u(t+to)

-u(t+to) 2
+ N| 1l-e

(N - ) (l-e

N
The Z D(n)Pn(t) sumation is asnalogous to finding this second moment.
n=o

Thus,

N-n

N

2 /N
3 cpn® ()
n=0

e+t NV T m(t+t)
l-e ° ) (e °

N
E p(n)p, (t)
n=Q

l-e

_u(t+t°)) 2 . -H(t+t o))]
+

c, [(N2 - N) (l—e

-2u(t+t ) “H(t+t )
° 4+ (1-2n)e ° +N] .

NC [(N-l)e

Therefore, proceeding in a straight-forward fashion end simplifying,

23




t, X -8t
jo % D(n)P_(t)ee dt

n=0

T

l-e-tl(aue)’ ) (1-2N)6e ) (l_e-tl(uwe)) \ N(l-e-tle)

H+6

-2t
N-1)9e °

= NG, 2440

Hence, after considerable simplifiecation,

-9t Mt
d fe Ne
at (E{C(tl)}) = -th)e Q

1 l-e

where

O
L}
Q
UA
=
1
At
[¢]

+

cp(1-2N)e

nt

'
)
$ =
ot
Q
2]
o
+
Q
U’\
T
'_l
g
[¢]
|
k=~
t
o]
a—————
glm
+
Q
U/'\
H
]
n
=
o
—_—
&
+]o
D
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Assume that tl is a positive root of the critical equation. Thus, if

o
[

dat

H

: (E(C(tl) ]) ‘ . >0,
tl=tl

»*
then E[C(tl)] is at least a local minimum.

o 6t, Kt
as _ 6e Ne Jo1o)
1 1l-e
e ( —6t1)2 p Bt -t -th)
- N o) l-e 6 e + 20 e l-e
€ Bt | % Q-
l-e )
Hence,
0t -ut
d2 E{ ) be ‘T Ne © ag
2 C(tl) * = *\2  dt b=t
dty 7% ’etl) 11 ty=t
l-e
Thus, if
daq
E%'l * >0 B
7Y

*
then E[C(tl)] is a local minimum. After considerable simplification,

49
at;

can be written as

25



-Bt -6t H(t +t.)
49 _ 1 T - - 1 - B+
%, He l-e 2CD(N 1) [1-e + Cp- Ce 175|
Let ti be the value of tl such that
e +t'))
! _c |we
2CD(N-1) (l-e +Ch=0Cr |5 .
Then, clearly, if tl >0, then
a9 v
<0 1f 6 <ty
1
dq '
dtl >0, if tl > tl .

It now needs to be pointed out that Q is continuous and that Q < 0O

at t. = 0. Therefore, there exists € > O such that

1
L (Ble(t,))) <0 iIf 0<t <e .
dt, 1 1
49 :
Hence, since dti <0 ir tl >0 and tl < tl s
a A
gt (E{c(t,))) <0 if ¢, >0 and t, <t .

26



Therefore, if t; >0 end

d
3 Bl =0

*

then tl > t!, and hence, %%— > 0. The implication is that if tl

1
*
is a positive root of the critical equation, then E[C(tl)] must be a
aq '
local minimum. Furthermore, since >0 for t. >0 and t, > t!',

dtl 1 1 ]
* *
tl must be a unique positive root. Additionally, tl can easily be

estimated as closely as desired. Merely proceed by trial and error

* ¥* dg
while remembering that tl >0 and tl > t!, and that rs >0 for
1
H*
tl >0 and tl > ti . Thus, lower and upper bounds for tl can

immediately be established and then revised closer and closer to the

*
true value of tl. The one exception to this procedure would arise
when there does not exist even the single positive root of the critical

equation. This could hsappen if and only if

570; (E(C(tl)])<0 for t, >0 ,

which in turn occurs if and only if

-Ht C -Hto 6
CD(N_l)e - + — - + CD(N-l)e v}

8
+ CD (1-2n) (ﬁ:g < 0.
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1" ©, {i,e., never take

corrective action. The final {mportant implication of the results 1s

*
1

+* *
0<t) <t and @>0 if t >t,

For this case, the obvious recommendation is t

that, if the unique positive root t, exists, then since Q <0 if

and since a%; (E(C(t,)]) has

*
the same sign as Q for t, >0, E[C(tl)] must be a global minimum.

1
In summery, if

e | _x %R e o
Cp(N-1)e -| TS + =y + C (N-1)e (§+5)+ C,(1-2N) (u+—e <o,

* *

never teke corrective action. Otherwise, select tl = tl, where tl

is the necessarily unique positive root of the critical equation, @Q = O.
*

1’ determine

This policy will minimize E[C(tl)). Before solving for t

if

“ut .
[2(N-l) ‘l—e °) + 1] Cp 2 Cp (%’ :

If so, then a9 >0 for t, > 0. If not, determine ¢t!
dtl 1 1

lower bound to t!, where

, or at least a

H(t +t'))
o1 _ u+6
2C (N-1) |1-e +Cp=Cp |5
* 49
in which case t, > t: and >0 for t, > t!. In either case,
1 1 dtl 1 1

Q<0 for t, =mex (O, ti]. Then, letting max (O, tJ'_] be an initial

1
28



¥*
lower bound for t, and using the fact that 89 >0 for

1 dtl
1
tl > max {0, tl], proceed by trial and error or by more systematic
¥*
numerical methods, to converge upon the true value of tl to whatever

accurecy is desired.

6. Example

A certain company in the electronics industry uses an assembly line
for assembling one of its products. One of the initial inputs of this
assembly line is a certain kind of electronic tube. This tube arrives
from an earlier set of operations in lots of 100, usually at a uniform
rate of ten lots each week. Unfortunately, due to a number of reasons
such as the breakdown of certain equipment, an occasional lot is
prevented frombeing delivered when needed. It has been observed that
the failure of the lot to arrive on schedule is a seemingly random
event in time, and that the average time between these events is 20
weeks. The consequencz of not having any of these tubes available is
that the assembly line must shut down. To safeguard agsinst this very
serious situation, a spare lot of the tubes is kept in reserve at =a
centralized storage station. Thus, whenever the lot in the regular
flow of production is delayed or rejected, the spare lot is immediately
removed from storage and used in place of the regular lot. The new spare
lot is then produced during overtime work if necesssary.

It has been observed that, ordinarily, the proportion of the tubes
which are produced defective is negligible. From previous experience,
both within and outside the company, it is estimated that the storage

life of this tube is exponentially distributed with a mean of 180 weeks.
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Therefore, to oife==giar~d against using the spare lot when it contains an
excessive nuiuni ox>f de~fectives, it is felt that the lot should periodi-
cally be screesswi and the defective tubes replaced with non-defective
tubes., Howeveoe, i .i.'l; i® not known just how often this corrective action
should be tekrssomo &8 to minimize the total expected cost.

It is est:iiilit Sed that the cost of inspecting the entire lot is
$100.00, Ther-ml _acemsents for the defective items would be produced
and inspecteio.iri .ngo-vertime work, which would involve a cost of
$10.00 per {fteme = Sincee there is not enough time to inspect the lot
whan it is callld  dnto service, any defective tube present would be
assembled intooolle = cororesponding item of the product. The result would
be that the sassub”eled Jproduct would not test out; it would then be
checked, partisiilly - dissmssembled, the tube replaced, and reassembled.
The total extramwsest imvolved for each defective tube is approximately
$100.00.

This dats sals m suff Jdcient to permit the use of the results presented
earlier to provoode eselution. The cost functions clearly are
D(n) = 100n emi AR(n) =100+ 10n. lLetting the unit of time be the
week, H = 1/1800l es&ni 6 = 1/20.: Since the proportion of the tubes

which are prowtied defective is negligible, to = 0, Thus, in the -

notation of thettlirmnesr model of Section 4, A = .—?% and
M Tel
(A - 5) =7 . lexeferr-ing to Figure 4.1, it is seen that utl should

lie between 0.0f§emani O.10. Linearly interpolating between the two

curves, utl= =((=55. Therefore, t the elapsed time between

l)

consecutive inmguttionss of the same lot in storage, should be about

9.9 weeks.



7. Discussion of Results

_All of the foregoing results have been based on the assumption that
the particular equnential distribution of storage life is known.
Therefore, the following statement may at first seem surprising and
contradictory. It is that the widest application of these results
probably should be to the situation where the distribution of storage
1ife must be judged to be unknown, at least at the initiation of the
program. To understand why, it should be recognized that, for this
situation, a program of surveillance sampling would or should be
conducted which would have the effect of gradually identifying the
underlying distribution of storage 1life. Thus, it is entirely feasible
that, by the time corrective action should be taken, the surveillance
sampling can sufficiently identify the underlying distribution of
storage 1ife to signal the need for this corrective action with the use
of the foregoing results. In this connection, it should be noticed that
was being sclved for, it was really utl that was

~H(t +to)

being found for a particular ratio. %. Thus, since 1l-e 1 is

when the optimum tl

the expected fraction defective in the lot at time t

-Ht
is chosen so that 1l-e ©° is the expected initial fraction defective,

1’ and since uto

the result of the anglysis is to determine the value of expected fraction
defective at which corrective action should be taken. Hence, when
surveillance sampling indicates or predicts approximately this fraction
defective while estimating the corresponding ratio %, then corrective
action would appropriately be taken at the predicted time. In summary,
whenever the particular distribution of storage life is unknown, but

assumed to be exponentiasl, use surveillance sampling in effect to estimate
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the particular distribution and then apply the corresponding results.

One limitation of the results is that the distribution of storage
life is assumed to be exponential. However, this should at least serve
as a useful epproximation in a large proportion of the cases. Even vwhen
the distribution of storage life is known to be not nearly exponential,
the results might be enlightening and instructive. It should also be
recognized that, especially when corrective action will consist of
replacing the lot, only the early part of the distribution of storage
life may really need to resemble the exponential distribution.

Another limitation of the results is that solutions are readily
obtairiable only for a limited number of D(n) and R(n) functions.
Fortunately, emong these functions are the extremely important ones
studied in the preced! z sections. The R(n) function studied appears
to be at least a reasonable approximation for most situations of interest.
The two D(n) functions studied appear to be reesonable approximations
for the two primary types of situations. One of these types is where
the imputed cost of defective items in the lot at the time of the
emergency 1is roughly proportional to the number of such defectives.
This would occur, for example, where the results of the use of the items
in the lot are relatively independent. The other primary type of
situation is where the imputed cost of defectives when the emergency
occurs increases rapidly as the number of these defectives incresses.
This would occur, for example, where a few defectives in the lot would
be easily compensated for by the many non-defectives but the usefulness
of the lot would become seriously compromised by the presence of a

relatively large number of defectives. The results derived for the
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quadratic D(n) function should be useful for this type of situation
either as a preliminary result requiring adjustments or as a final
solution. The linear D(n) function results should similarly be
useful for the first type of situation discussed.

The model does not consider the possibility of the obsolescence of
the items in storage or of the termination of the time in which the
relevant emergency can occur. However, unless such an occurrence is
expected soon, it does not appear that the accuracy of the results

would be affected significantly.

8. Conclusions

The results presented here should be helpful in many cases in
determining when corrective action should be tsken because of the
deteriorating quality of a lot in storage. The model does assume the
knowledge of considerable information, including the common distribution
of storage life of the items in the lot., However, it appears to be
feasible to gather and refine this information by surveillance sampling
while simultaneously applying the indicated results. Another important
limitation is the assumption that the distribution of storage life i=s
exponential. Nevertheless, this assumption should be entirely
appropriate in many cases and a useful approximation in many others, at
least for instructive preliminary analysis. One of the sets of cost
functions analyzed and shown to lead easily to a solution should be

appropriate for most cases of interest.
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